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ABSTRACT

The first reported observation of crisis induced intermittency (sudden chaotic attractor

widening wih its characteristic temporal behavior as a system parameter is varied) has

been observed in a parametrically driven gravitationally buckled amorphous ribbon

experiment. The experimental results are in excellent agreement with the predictions

made by Grebogi, et. al. for the temporal behavior of nonlinear flows and maps near a

crisis. ...... / j
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A gravitationally buckled amorphous ribbon driven parametrically by a time varying

magnetic field (Figure 1(a)) has been observed to exhibit sudden chaotic attractor

widening (and consequent intermittency) as the drive frequency is varied. The temporal

behavior of this system shows excellent agreement with the characteristic temporal

behavior termed crisis induced intermittentcy by Grebogi, Ott, Romeiras and Yorke I in

their study of intermittency in nonlinear flows and maps.

We have observed that a crisis occurs in our system as the driving frequency f

decreases through a critical value fc- For f < fc the chaotic motion typically remains for

a long time in a region near its initial buckled state called the core attractor. A crisis then

occurs in which the motion suddenly bursts into a more remote region made available by

the crisis, stays there briefly and returns to the core attractor. Experimentally a burst

consists of the ribbon starting from the initially buckled configuration, passing through

the vertical unstable equilibrium position, buckling on the opposite side for a period of

time and then returning to the side of the initial buckling.

The ribbon that is used in the experiment is a member of a new class of amorphous
I-

ferromagnetic materials that has been discovered1 to exhibit very large, rapid, reversible

changes of Young's modulus E(H) with the application of a magnetic field( _C-
"7-

Using this large change in modulus, Savage and Adler have reported how a vertical,

amorphous ribbon, clamped at the bottom and free at the top, can be made to buckle

under its own weight and subsequently unbuckle by increasing a magnetic field from

zero to magnetic saturation. -The process is as follows: The critical height hc at which a

vertical column will buckle under its own weight depends on its stiffness, i.e., hc is

prortional io IE(H)J1,. In the experiment E(H) can be changed by changing the value
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of the vertical field H, thus changing the value of hc below and above the height h of the

ribbon.

In the one-dimensional theory2 used to describe the experiment, a magnetostrictive
"Hooke's law" for the material was shown to be e = T/E0 - (3X/2)(M/Ms) 2 , where

= 3.0 x 10-5 is the magnetostriction constant, E0 = 2 x 1012 JIm 3 is Young's modulus

at infinite field, M s = 1.7 T is the saturation magnetic moment and e, T and M are the

longitudinal (vertical) stranr., stress, and magnetic moment respectively. In this theory a

finite stress-strain expression was shown to be2

T = Z an(H) (e- eo)n

where e0 is the strain at zero stress. The coefficients an are completely determined from

other experiments 2. The coefficient a, in the series is E(H) and is shown by the smooth

curve in Fig. la. The measurement of E(H) in resonance experiments is also shown.

Values of the magnetic field that cause buckling were found to be in good agreement

with predictions based on the values of the eigenvalues (which depend upon E(H)) of the

linearized operator describing the experiment. 2

Since the an are all functions of H, we can magnetically change the elastic nonlinearity

by changing H. The ribbon can be made elastically linear with M = 0 or at magnetic

saturation (M = M S, which occurs at large H). The buckling of the ribbon is governed by or

a quasilinear system of partial differential equations 2 and is parametrically driven by
changing H. A restoring torque proportional to M H sin 0, where 0 is the angle between

the ribbon and the field, is also present but can be shown to be quite small. L0-
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The experiment consists of a Fe81 B 13 .5Si3 .5C2 amorphous ferromagnetic ribbon,

25pm thick, 3 mm wide, and. 1 m long clamped at the base to yield a 650 mm free

vertical height. A pair of Helmholtz coils and an HP3325A frequency synthesizer were

used to produce a bias (constant) vertical magnetic field H0 and an alternating vertical

magnetic field component with amplitude Hac and driving frequency f, i.e., H = H0 +
Hac cos(21tft). An MTI 1000 Fotonic sensor, centered 6mm from the clamped base of

the ribbon, was used to obtain a time series of the horizontal displacement that was stored

at a rate of 42.7 samples/sec on a PDP/1 1. Runs of 100,000 points (39 min. duration)

were obtained for many driving frequencies. The ribbon was started from an initially

buckled configuration by adjusting h to a value slightly larger than hc at H = 0.

A phase space study was performed and an attractor was reconstructed from the time

series by embedding the time series data points labeled P1 ,P2 ,P3,... in a d-dimensional

phase space using the usual technique of a delay coordinate embedding and forming the

d-tuple (Pi,Pi+n,Pi+2n .... Pi+(d-1)n) for the points Pi for the time series4 . The delay n

selected was the common choice of the first minimum of the autocorrelation function of

the data and was determined to be 15 data points (yielding a delay of .35 sec). The

attractors, for frequencies before and after the crisis are shown in Fig. 2a and Fig. 2b

respectively. The time between bursts tb was measured as the length of time the orbit

spends in the core attractor. Values of tb exhibited a Poisson distribution ( Fig. 3 ) if

times shorter than a minimum time, to = 11.5 sec, were not used in the analysis. The

value of to reflects the time required for the orbit to settle onto the core attractor after a

burst has ended. The value of to is independent of the frequency providing it is still

sufficiently close to the critical frequency. The characteristic time t, averaged over the

time series of 39 min, for bursts lasting longer than to, has been measured at many



frequencies close to fc- In Fig. 4 the characteristic time clearly exhibits the power law

- = (fc - Pf-^ as predicted in Ref. 3. The value of y, the critical exponent, is found to be

.827 ± .05.

Poincar6 sections have been obtained for the attractor by constructing the 3

dimensional delay coordinate embedding (X 1,X2,X3) where X1 = Pi, X2 = Pi+ 15,

X3 = Pi+3 0 for the points Pi of the time series and defining the section to be the plane S

defined by

S= (X1 ,X3) I X,=X 2 andX,>X 2 }

Fig. 5a and Fig. 5b exhibit sections before and after the crisis respectively. The

additional regions visited in Fig. 5b exhibit few points as indicated by the short periods

of time spent bursting. It is important to note the existence of an unstable period 9 orbit

A: Al -> A2 -> A3 -> ... -> A9 -> A1 -> ... and an unstable period 3 orbit B: B 1 ->

B2 -> B3 -> B I -> .... Analysis of the sections and time series indicated that for f = fc

the unstable manifold for the period 9 orbit A becomes tangent to the stable manifold of

the period 3 orbit B, which is on the boundary of the attractor. The orbit then initiates a

burst by shooting out along the unstable manifold of B. The crisis is heteroclinic because

a burst was always preceded by the characteristic period 9 to period 3 sequence.
By examining the preiterates and postiterates of the period 9 orbit A the eigenvalues a 1

(expanding direction) and 0C2 (contracting direction) for A were calculated to be ?? and

?? respectively. For a heteroclinic crisis the critical exponent yis 3 , Y= 1/2 + ln(lall) / I

Inla 2I I , yielding the value y = .9 ±.1 , which is in good agreement with the experimental

value determined previously.

We can conclude that our experimental results provide evidence of crisis induced

ititerrnittency in amorphopus ferromagnetic ribbons and the validity of the method

proposed by Grebogi et. al. for determining the critical exponents for the temporal

dependence of the intermittency from an experimental time series.
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FIGURE CAPTIONS

Fig. 1 (a) Experimental arrangement for the buckling ribbon.
(b) Normalized Young' modulus, E(H)/E0 vs magnetic field H in transverse-field

annealed, amorphous Fe8 1B1 3 5 S3 5 C2
•

Fig. 2 Attractors (a) f = .835 Hz > fc (before crisis) and (b) f = .830 Hz < fc (after
crisis).

Fig. 3 Poisson distribution of bursting times tb at a driving frequency of .830 Hz. The
" non-Poisson" first 11.5 sec is the time for the orbit to settle on the core attractor.

Fig. 4. Ln (,t) vs Ln (f -fc)- t is the average time between bursts and f is the driving

frequency.

Fig 5. Poincar6 sections (a) f = .835 Hz > fc (before crisis) and (b) f = .830 Hz < fc
(after crisis). The An (period 9 unstable orbit points) are illustrated in (a) and are
similarly located in (b). The Bn (period 3 unstable orbit points) lie on the
boundary of the core attractor and appear only in (b).
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